

LEDVANCE USER MANUAL

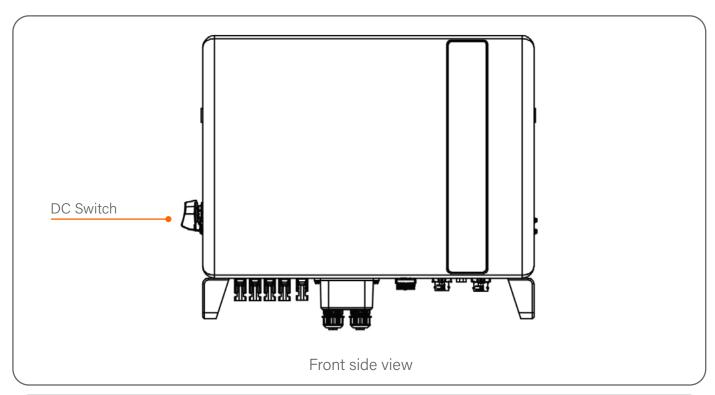
HYBRID INVERTER

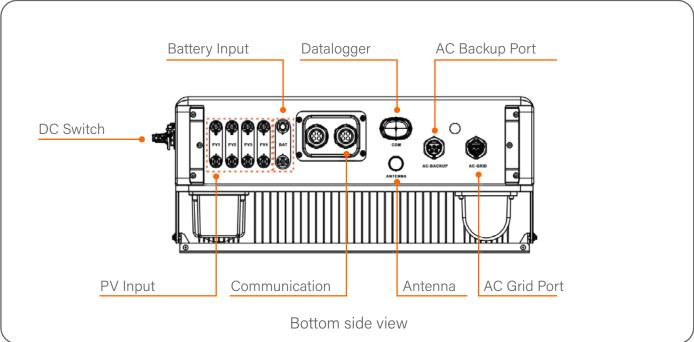
LHT-HV-5K F2 LHT-HV-8K F2

LHT-HV-6K F2 LHT-HV-10K F2

CONTENTS

INTRODUCTION	3
PRODUCT DESCRIPTION	3
PRODUCT INSTRUCTIONS	4
PACKAGING	
SAFETY	
SAFETY & WARNING	
GENERAL SAFETY INSTRUCTIONS	
NOTICE FOR USE	
NOTICE FOR DISPOSAL	
OVERVIEW	8
INTELLIGENT LED INDICATORS	
INSTALLATION	9
MOUNTING THE INVERTER	
PV INPUT CABLE INSTALLATION	
BATTERY POWER CABLE INSTALLATION	
AC CABLE INSTALLATION	17
AC GRID PORT CONNECTION	17
AC BACKUP PORT CONNECTION	19
DISASSEMBLY CONNECTOR	21
COMMUNICATION CABLE INSTALLATION	22
METER INSTALLATION	26
INVERTER REMOTE MONITORING CONNECTION	30
COMMISSIONING & SHUTDOWN	31
PREPARATION OF COMMISSIONING	
COMMISSIONING PROCEDURE	31
SHUTDOWN PROCEDURE	34
WORK MODE	35
MAINTENANCE	37
TROUBLESHOOTING	
SPECIFICATIONS	43


INTRODUCTION


PRODUCT DESCRIPTION

The LEDVANCE inverters are designed for residential hybrid systems, which can work with batteries to optimize self-consumption. The unit can operate in both off- and on-grid modes.

This manual covers the LEDVANCE inverter models listed below:

LHT-HV-5K F2, LHT-HV-6K F2, LHT-HV-8K F2, LHT-HV-10K F2

PRODUCT INSTRUCTIONS

PACKAGING

Please ensure that the following items are included in the packaging with your machine:

If anything is missing, please contact your local LEDVANCE distributor.

SAFETY

The following types of safety instructions and general information appear in this document as described below:

SAFETY & WARNING

DANGER

"Danger" indicates a hazardous situation which if not avoided, will result in death or serious injury.

WARNING

"Warning" indicates a hazardous situation which if not avoided, could result in death or serious injury.

CAUTION

"Caution" indicates a hazardous situation which if not avoided, could result in minor or moderate injury.

NOTE

"Note" provides tips that are valuable for the optimal operation of your product.

WARNING - RISK OF FIRE

Despite careful construction, electrical devices can cause fire. Do not install the inverter in areas containing highly flammable materials or gases.

Do not install the inverter in potentially explosive atmospheres.

GENERAL SAFETY INSTRUCTIONS

WARNING

Only devices in compliance with SELV (EN 69050) may be connected to the RS485 and USB interfaces.

WARNING

Please don't connect PV array positive (+) or negative (-) to ground, it could cause serious damage to the inverter.

WARNING

Electrical installations must be done in accordance with the local and national electrical safety standards.

WARNING

Do not touch any inner live parts until 5 minutes after disconnection from the utility grid and the PV input.

SAFETY

WARNING

To reduce the risk of fire, over-current protective devices (OCPD) are required for circuits connected to the inverter.

The DC OCPD shall be installed per local requirements. All photovoltaic source and output circuit conductors shall have isolators that comply with the NEC Article 690, Part II.

CAUTION

Risk of electric shock, do not remove cover. There is no user serviceable parts inside, refer servicing to qualified and accredited service technicians.

CAUTION

The PV array supplies a DC voltage when they are exposed to sunlight.

CAUTION

The surface temperature of the inverter can reach up to 75°C. To avoid risk of burns, do not touch the surface of the inverter while it's operating. Inverter must be installed out of the reach of children.

NOTE

PV module used with inverter must have an IEC 61730 Class A rating.

WARNING

Operations below must be accomplished by licensed technician or LEDVANCE authorized person.

WARNING

Operator must put on the technicians gloves during the whole process in case of any electrical hazards.

WARNING

AC BACKUP Port of Series is not allowed to connect to the grid.

WARNING

Please refer to the specification of the battery before configuration.

SAFETY

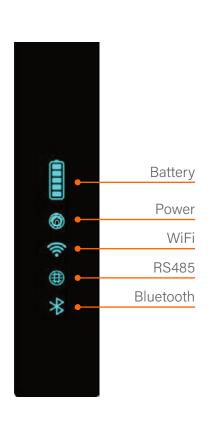

NOTICE FOR USE

The inverter has been constructed according to the applicable safety and technical guidelines. Use the inverter in installations that meet the following specifications ONLY:

- 1. Permanent installation is required.
- 2. The electrical installation must meet all the applicable regulations and standards.
- 3. The inverter must be installed according to the instructions stated in this manual.
- 4. The inverter must be installed according to the correct technical specifications.

NOTICE FOR DISPOSAL

This product shall not be disposed of with household waste. They should be segregated and brought to an appropriate collection point to enable recycling and avoid potential impacts on the environment and human health. Local rules in waste management shall be respected.



OVERVIEW

INTELLIGENT LED INDICATORS

There are five indicators on the The LEDVANCE inverter (battery, power, wi-fi, ethernet and bluetooth) which indicate the working status of the inverter.

The bluetooth antenna or wi-fi datalogger shall be installed at the antenna/COM port of the hybrid inverter before local debugging.

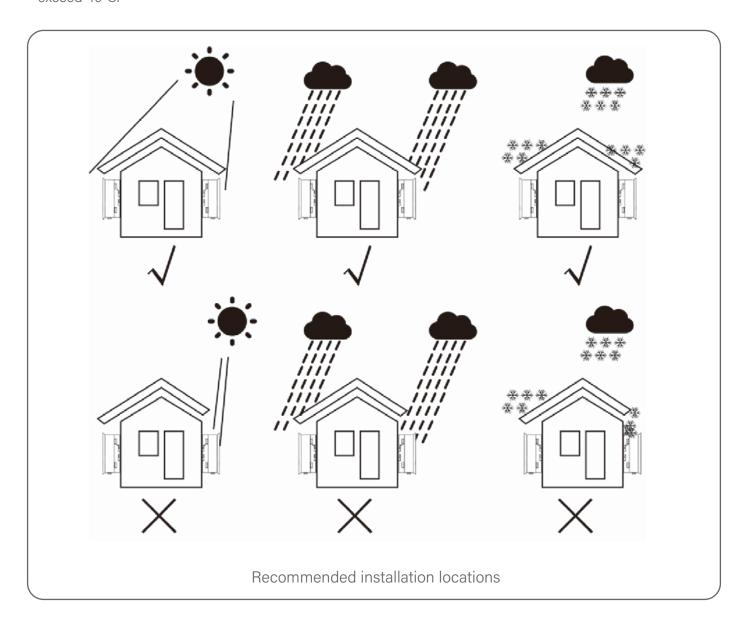
LIGHT	STATUS	DESCRIPTION
_	Blue flashing every 3s	Battery discharging.
	Blue flashing every 1.5s	Battery charging.
Battery	Blue solid ON	Idle.
, , ,	OFF	No battery connected or not working.
	Blue solid ON	Normally operating.
©	Yellow solid ON	Warning.
Power	Red solid ON or flashing every 3s	Alarm.
	OFF	No battery connected or not working.
(i-	Blue solid ON	COM port is using.
WiFi	OFF	COM port is not used.
	Blue solid ON	RS485 port is using.
RS485	OFF	RS485 port is not used.
*	Blue solid ON	Bluetooth port is using.
Bluetooth	OFF	Bluetooth port is not used.

TURNING ON THE LED INDICATOR LIGHTS

After a few minutes, the LED indicator lights will turn off to conserve power. To turn the lights back on, short-press the Inverter LED light.

ALARM STATE

When the inverter has an alarm, the Inverter LED light turns red and starts flashing. It is recommended to connect to the inverter with the Bluetooth tool. Then you can determine what the alarm code is.


NOTE

Battery/wi-fi/ethernet/bluetooth indicators will automatically turn off after minute. The power indicator will remain on 1 with lowest brightness. Short press the power indicator can wake up all indicators.

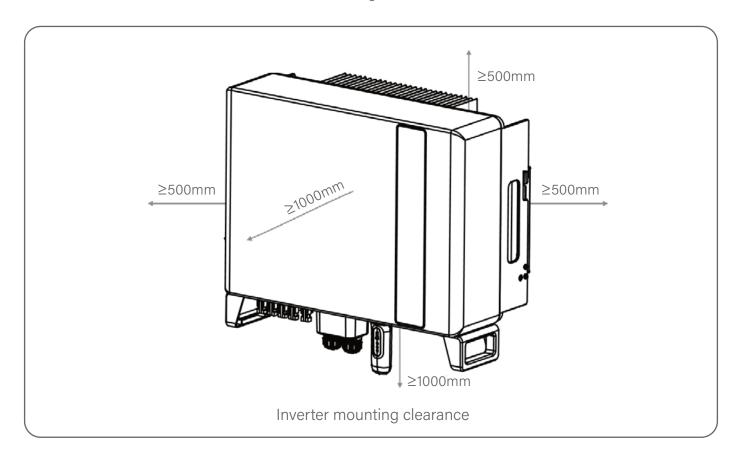
SELECT A LOCATION FOR THE INVERTER

To select a location for the inverter, the following criteria should be considered:

- Exposure to direct sunlight may cause output power derating. It is recommended to avoid installing the inverter in direct sunlight.
- It is recommended that the inverter is installed in a cooler ambient which doesn't exceed 40°C.

WARNING - RISK OF FIRE

Despite careful construction, electrical devices can cause fire.


Do not install the inverter in areas containing highly flammable materials or gases.

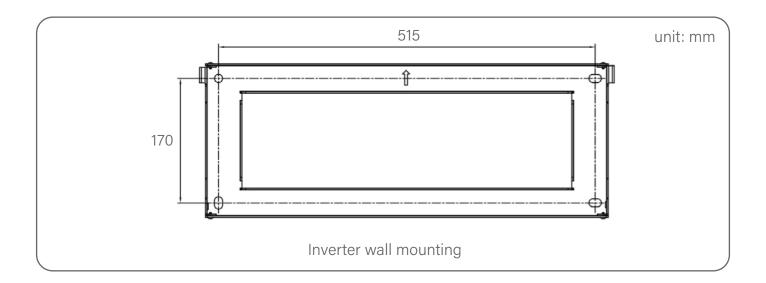
Do not install the inverter in potentially explosive atmospheres.

The mounting structure where the inverter is installed must be fireproof.

- Install on a wall or strong structure capable of bearing the weight of the machine (24kg).
- Install vertically with a maximum incline of +/- 5 degrees, exceeding this may cause output power derating.
- To avoid overheating, always make sure the flow of air around the inverter is not blocked.

Minimum clearance of 500mm should be kept between inverters or objects and 1000mm clearance between the bottom of the machine and the ground.

Adequate ventilation must be provided.

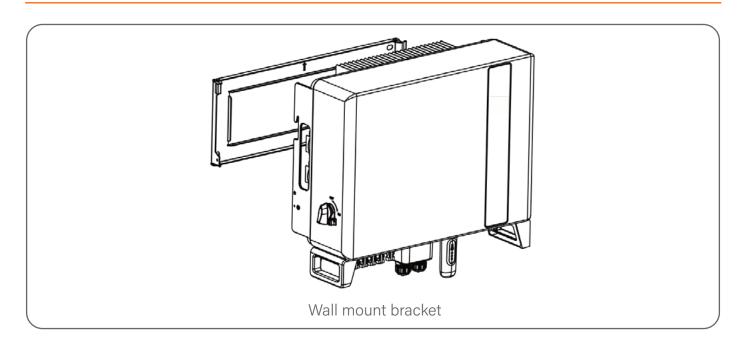


NOTE

Nothing should be stored on or placed against the inverter.

MOUNTING THE INVERTER

Dimensions of mounting bracket:


Once a suitable location has been found, mounting bracket should be mounted to the wall.

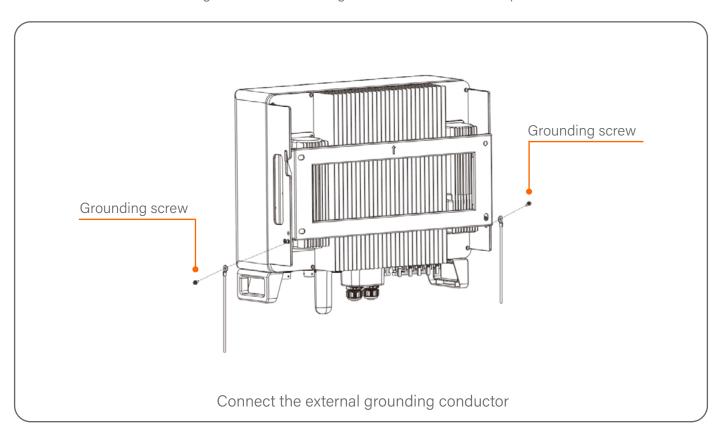
The inverter must be mounted vertically.

The steps to mount the inverter are listed below:

- 1. Select the mounting height of the bracket and mark the mounting holes.

 For brick walls, the position of the holes should be suitable for the expansion bolts.
- 2. Lift up the inverter (be careful to avoid body strain), and align the back bracket on the inverter with the convex section of the mounting bracket. Hang the inverter on the mounting bracket and make sure the inverter is secure.

WARNING


The inverter must be mounted vertically.

PE CABLE INSTALLATION

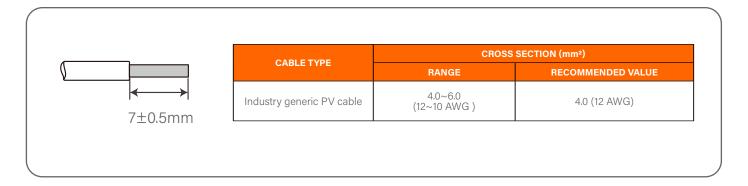
An external ground connection is provided at the right side of inverter.

Prepare OT terminals: M4. Use proper tooling to crimp the lug to the terminal.

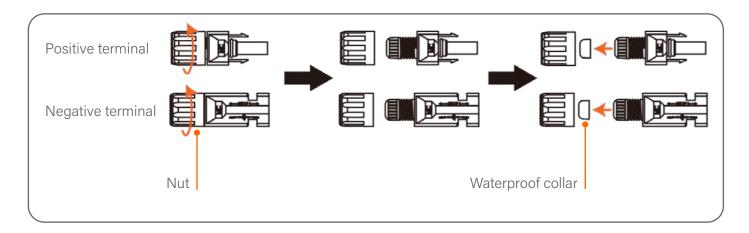
Connect the OT terminal with ground cable to the right side of inverter. The torque is 2Nm.

PV INPUT CABLE INSTALLATION

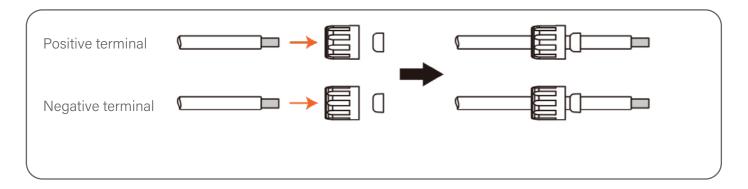
Before connecting inverter, please make sure the PV array open circuit voltage is within the limit of the inverter.

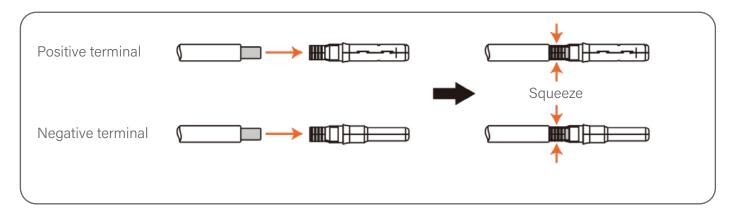


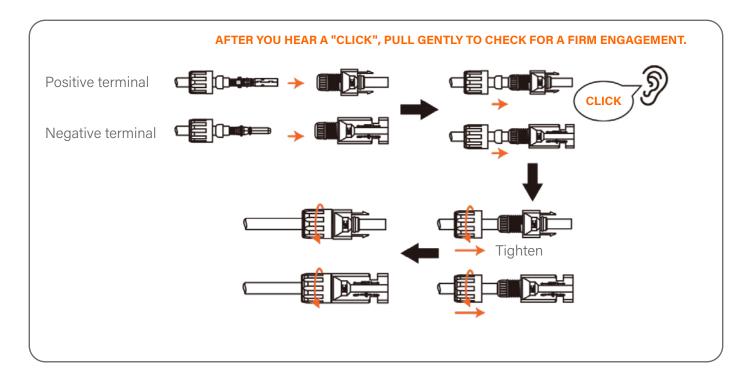
Before connection, please make sure the polarity of the output voltage of PV array matches the "DC+" and "DC-" symbols.

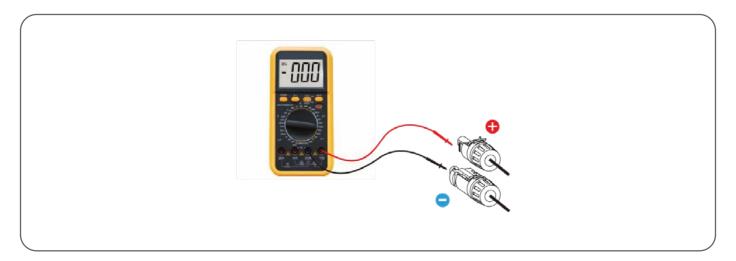


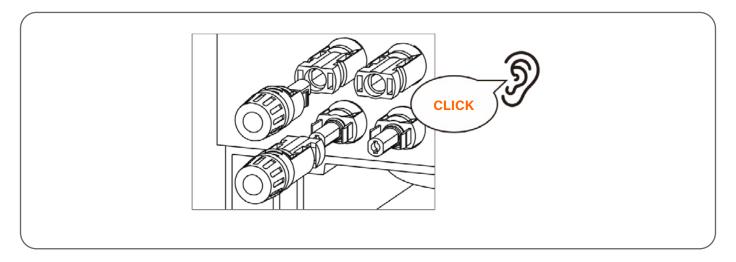
Please use approved DC cable for PV system.


1. Select a suitable DC cable and strip the wires out by 7 ± 0.5 mm. Please refer to the table below for the specifics.


2. Take the DC terminal out of the accessory bag, turn the screw cap to disassemble it, and take out the waterproof rubber ring.


3. Pass the stripped DC cable through the nut and waterproof rubber ring.


4. Connect the wire part of the DC cable to the metal DC terminal and crimp it with a special DC terminal crimping tool.

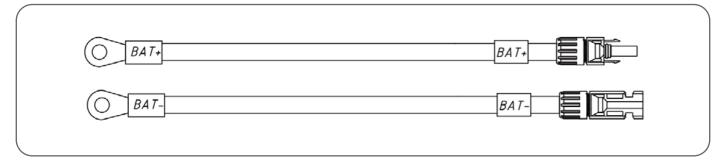

5. Insert the crimped DC cable into the DC terminal firmly, then insert the waterproof rubber ring into the DC terminal and tighten the nut.

6. Measure PV voltage of DC input with multimeter, verify DC input cable polarity.

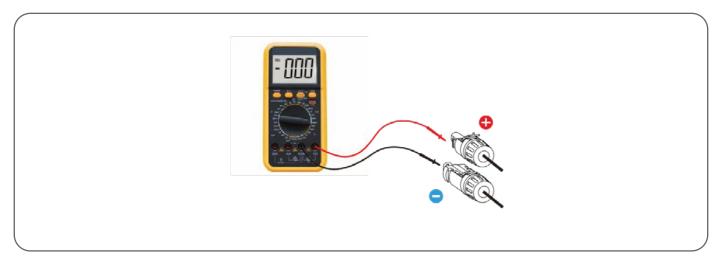
7. Connect the wired DC terminal to the inverter as shown in the figure, and a slight "click" is heard to prove the connection is correct.

CAUTION

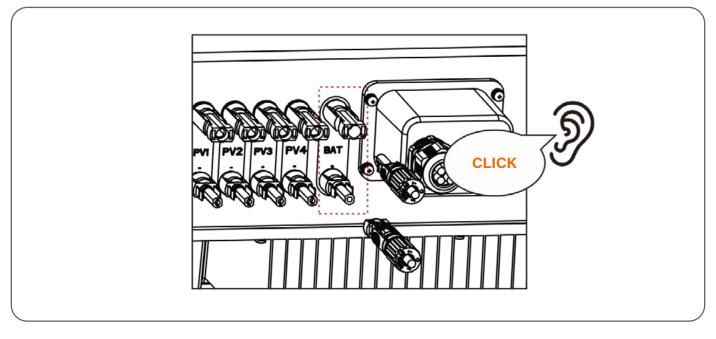
If DC inputs are accidently reversely connected or inverter is faulty or not working properly, it is NOT allowed to turn off the DC switch. Otherwise it may cause DC arc and damage the inverter or even lead to a fire disaster. The correct actions are:


- * Use a clip-on ammeter to measure the DC string current.
- * If it is above 0.5A, please wait for the solar irradiance reduces until the current decreases to below 0.5A.
- * Only after the current is below 0.5A, you are allowed to turn off the DC switches and disconnect the PV strings.
- * In order to completely eliminate the possibility of failure, please disconnect the PV strings after turning off the DC switch to aviod secondary failures due to continuous PV energy on the next day.

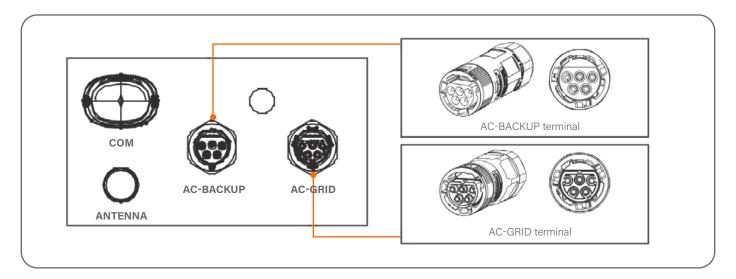
 Please note that any damages due to wrong operations are not covered in


the device warranty.

BATTERY POWER CABLE INSTALLATION


1. Take out the two pre-made battery power cables from the package. Cable length: 1 meter. Cross section area is 8mm².

- 2. Connect the battery ends to the battery module positive and negative terminals.
- 3. Measure DC voltage of DC input with multimeter, verify DC input cable polarity.



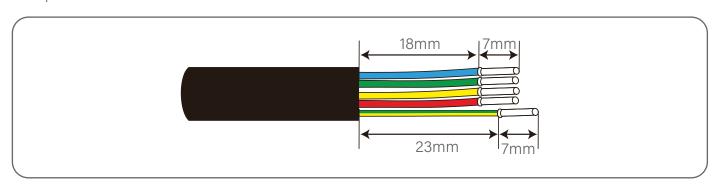
4. Connect the inverter end to the battery input port of the inverter as shown below, and push it in until you hear a "Click" sound which proves the fastened connection.

AC CABLE INSTALLATION

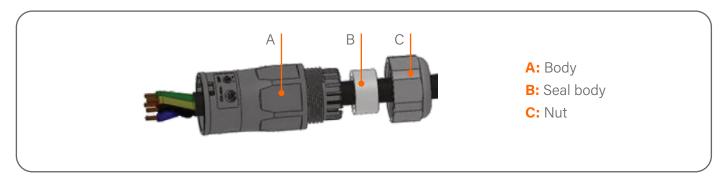
There are two AC terminals on the inverter and the assembly steps are similar. AC grid port is to connect to the grid and AC backup port is to connect to the critical load circuit.

NOTE

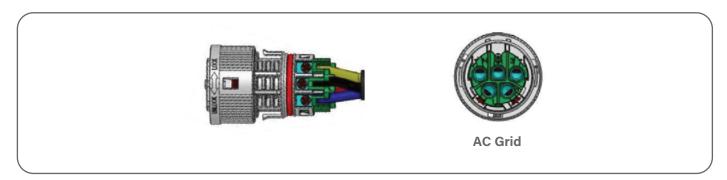
AC backup connector is longer while the AC grid connector is shorter.


AC GRID PORT CONNECTION

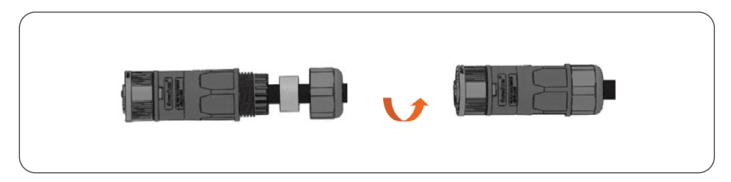
There are two AC terminals on the inverter and the assembly steps are similar.

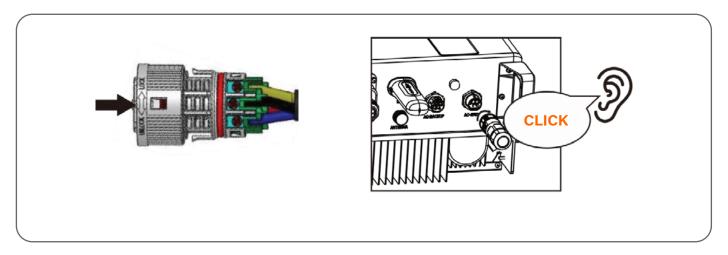

AC grid port is to connect to the grid and AC backup port is to connect to the critical load circuit.

DESCRIPTION	NUMERICAL VALUE
Cable diameter	14 ~17mm²
Traverse cross sectional area	6mm²
Exposure length	7mm


1. Strip the AC wires about 7mm.

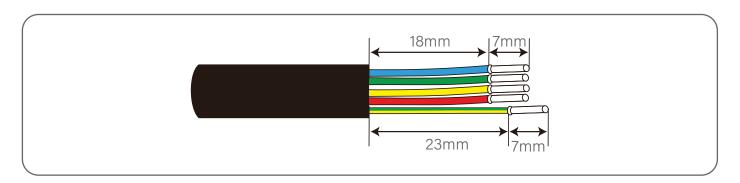

2. Disassemble the AC grid connector and set the parts on the cable.


3. Crimp wires, screw torque 0.8Nm±0.1Nm.

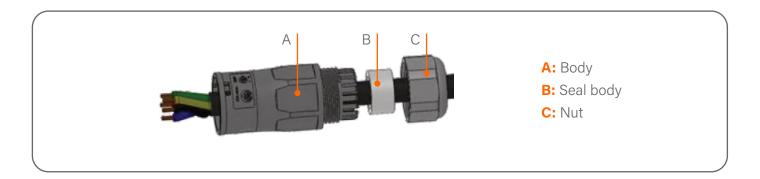

4. Push housing into body until you hear a "click" sound.

5. Insert seal body and claw into the body, and then tighten the nut with torque 2.5Nm±0.5Nm.

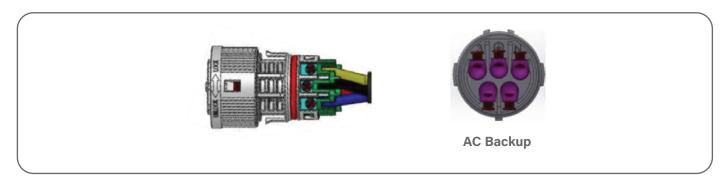
6. Push the AC backup connector into the AC backup port on the inverter and rotate the rotatory ring on the AC backup connector to the direction as marked "LOCK" on the connector (hold the body while rotating the ring).

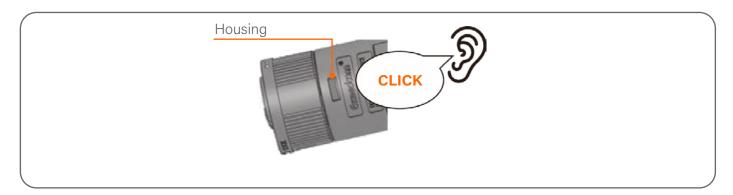

NOTE

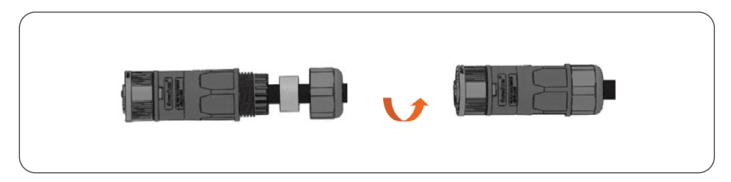
A continuity test shall be made to ensure that the correct terminations have been made after field wiring.

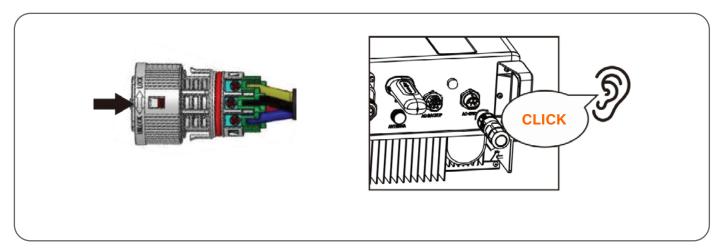

AC BACKUP PORT CONNECTION

DESCRIPTION	NUMERICAL VALUE
Cable diameter	14 ~17mm²
Traverse cross sectional area	6mm²
Exposure Length	7mm


1. Strip the AC wires about 7mm.

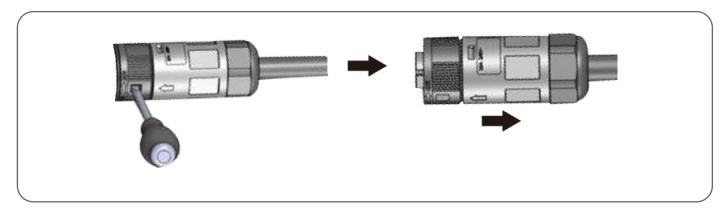

2. Disassemble the AC backup connector and set the parts on the cable.


3. Crimp wires, screw torque 0.8Nm±0.1Nm.

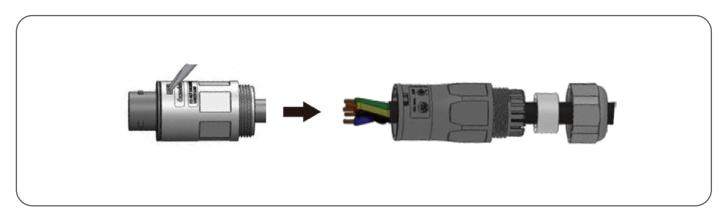

4. Push housing into body until you hear a "click" sound.

5. Insert seal body and claw into the body, and then tighten the nut with torque 2.5Nm±0.5Nm.

6. Push the AC backup connector into the AC backup port on the inverter and rotate the rotatory ring on the AC backup connector to the direction as marked "LOCK" on the connector. (Hold the body while rotating the ring).

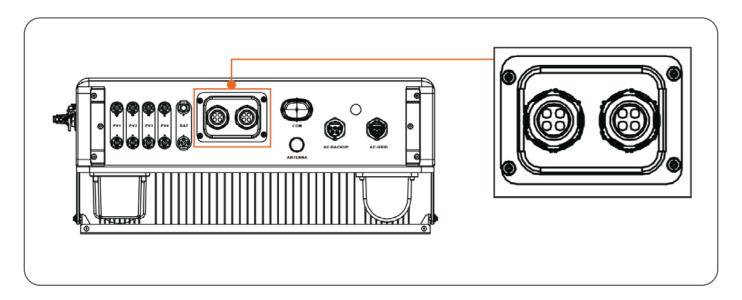


NOTE


A continuity test shall be made to ensure that the correct terminations have been made after field wiring.

DISASSEMBLY CONNECTOR

1. Separate the male and female connector, rotate the locker according to the direction instructed by the marks on the locker.



2. Disassembling body and housing for rewire.

COMMUNICATION CABLE INSTALLATION

PROTECTIVE COVER FOR COMMUNICATION PORTS

Inverter in the package is with a protective cover assembled to protect the communication ports.

Step 1. Use Phillips screwdriver to take out the 4 screws on the cover.

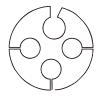
Step 2. Read through the following sections of the manual and prepare the internet cables correspondingly.

Step 3. Loose the cable gland and remove the watertight caps inside the cable gland based on the number of the cables and keep the unused holes with watertight cap.

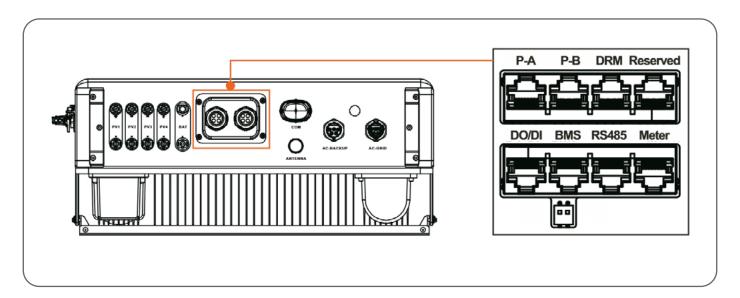
Step 4. Lead the cables into the holes in the cable gland (hole diameter: 6mm).

Step 5. Crimp the RJ45 connectors onto the cables according to the pin definitions described in the following sections and connect to the ports accordingly.

Step 6. Fasten the 4 screws on the cover (torque: 1.7Nm-2 Nm).

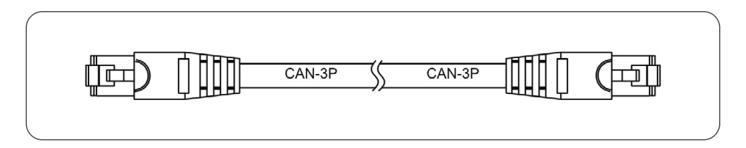

Step 7. Reassemble the cable gland and ensure there is no bending or stretching of the internet cables inside the cover.

NOTE


The 4-hole fastening rings inside the cable gland are with openings on the side.

Please separate the gap with hand and squeeze the cables into the holes from the side openings.

COMMUNICATION PORT DEFINITION

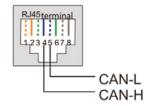


PORT	FUNCTION
BMS	Used for CAN communication between inverter and lithium battery BMS.
Meter	Used for RS485 communication between inverter and the smart meter. It is necessary to realize the normal hybrid control logics.
DRM	(Optional) To realize demand response or logic interface function, this function may be required in UK and Australia.
RS485	(Optional) Used for modbus RTU communication with 3rd party external device or controller.
P-A/P-B	(Optional) Parallel operation communication ports (Reserved).
DO/DI	(Optional) Dry contact port (Reserved).

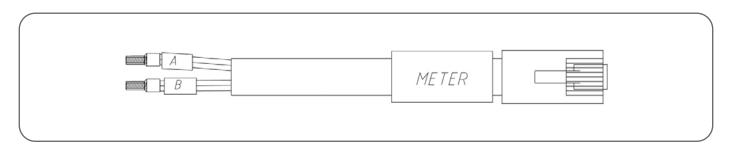
BMS PORT CONNECTION

Take out the pre-made CAN cable from the package and connect one end to battery CAN port and then connect another end to the inverter BMS port.

Cable length: 3 meters.



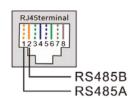
NOTE


Pin definition of the BMS port is following EIA/TIA 568B.

CAN-H on pin 4: blue CAN-L on pin 5: blue/white

METER PORT CONNECTION

Take out the pre-made meter cable from the package and connect RJ45 end to inverter meter port and then connect another end with loose RS485 A & B pins to the meter RS485 terminal. Cable length: 5 meters.



NOTE

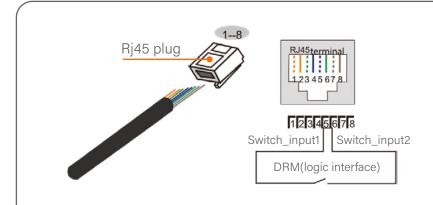
Pin definition of the meter port is following EIA/TIA568B.

RS485A on pin 1: orange/white

RS485B on pin 2: orange

NOTE

Compatible smart meter pin definition. Eastron SDM630MCT - pin 13 is RS485B & pin 14 is 485A. Eastron SDM630 - pin bis RS485B & pin A is RS485A.


COMMUNICATION CABLE INSTALLATION (OPTIONAL)

FOR REMOTE SHUTDOWN FUNCTION

LEDVANCE inverters support remote shutdown function to remotely control the inverter to power on and off through logic signals.

The DRM port is provided with an RJ45 terminal and its pin5 and pin6 can be used for remote shutdown function.

SIGNAL	FUNCTION
Short pin5 and pin6	Inverter generates
Open pin5 and pin6	Inverter shutdown in 5s

Correspondence between the cables and the stitches of plug, pin5 and pin6 of RJ45 terminal is used for the logic interface, other pins are reserved.

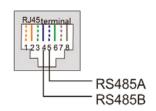
Pin 1: Reserved; Pin 2: Reserved;
Pin 3: Reserved; Pin 4: Reserved;
Pin 5: Switch_input1; Pin 6: Switch_input1;
Pin 7: Reserved; Pin 8: Reserved.

Strip the insulation layer and connect to RJ45 plug

FOR DRED CONTROL FUNCTION (FOR AU AND NZ ONLY)

DRED means demand response enable device. The AS/NZS 4777.2:2020 required inverter need to support demand response mode(DRM).

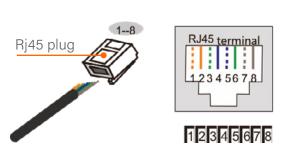
This function is for inverter that comply with AS/NZS 4777.2:2020 standard.


A RJ45 terminal is used for DRM connection.

NOTE

Pin definition of the RS485 Port is following EIA/TIA 568B.

RS485A on pin 5: blue/white RS485B on pin 4: blue



PIN	ASSIGNMENT FOR INVERTERS CAPABLE OF BOTH CHARGING AND DISCHARGING	PIN	ASSIGNMENT FOR INVERTERS CAPABLE OF BOTH CHARGING AND DISCHARGING
1	DRM 1/5	5	RefGen
2	DRM 2/6	6	Com/DRM0
3	DRM 3/7	7	V+
4	DRM 4/8	8	V-

NOTE

LEDVANCE hybrid inverter is designed to provide 12V power for DRED.

Correspondence between the cables and the stitches of plug

Pin 1: white and orange; Pin 2: orange; Pin 3: white and green; Pin 4: blue; Pin 5: white and blue; Pin 6: green; Pin 7: white and brown; Pin 8: brown.

Strip the insulation layer and connect to RJ45 plug

RS485 PORT CONNECTION (OPTIONAL)

If a 3rd party external device or controller needs to communicate with the inverter, the RS485 port can be used. Modbus RTU protocol is supported by LEDVANCE inverters. To acquire latest protocol

METER INSTALLATION

CAUTION

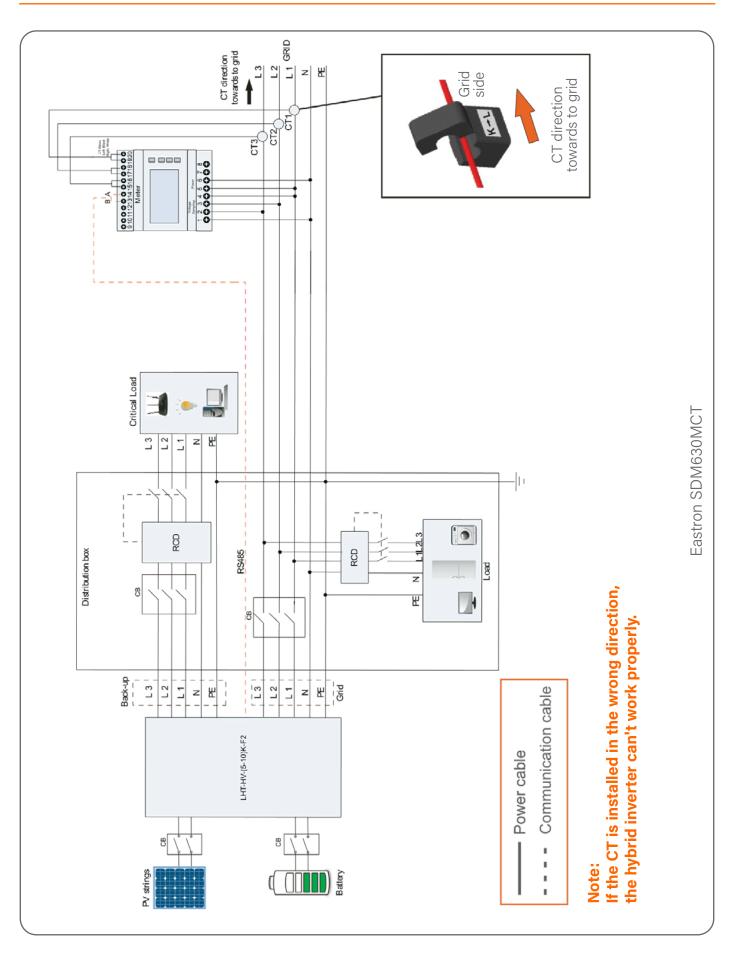
Make sure the AC cable is totally isolated from AC power before connecting the smart meter and CT.

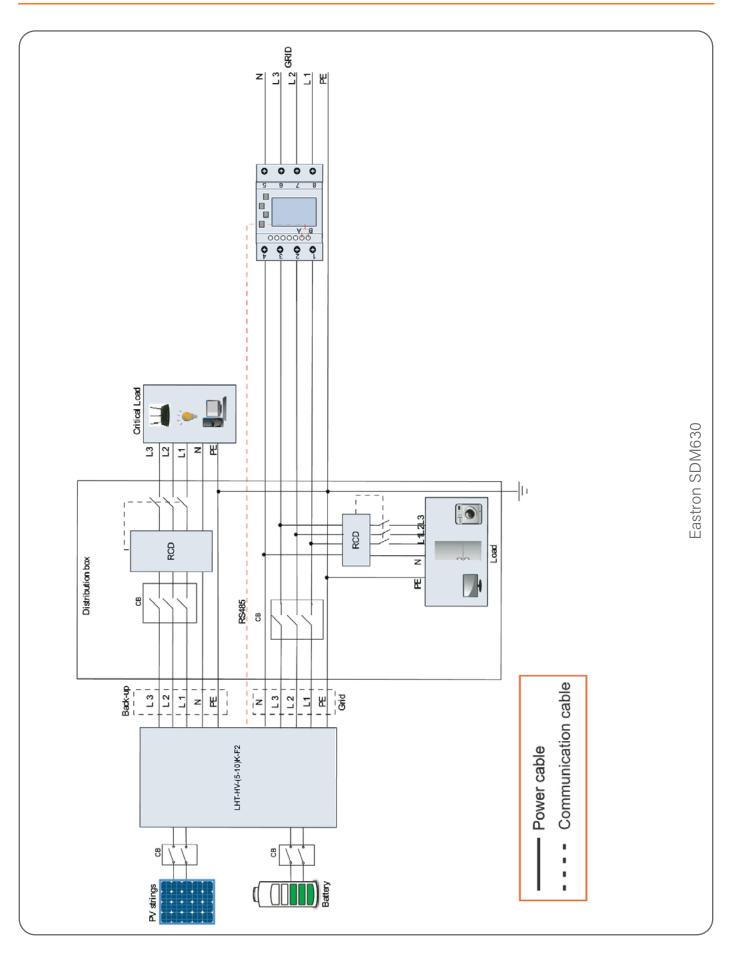
The LEDVANCE LHT-HV-(5-10)K-F2 inverters are able to connect standard.

Eastron meters to fulfill the control logic of the self-consumption mode, export power control, monitoring, etc.

Eastron 3ph meter (with CT): SDM630MCT (provided by default)

Eastron 3ph meter (direct insert): SDM630 (optional, customer prepare if needed)




NOTE

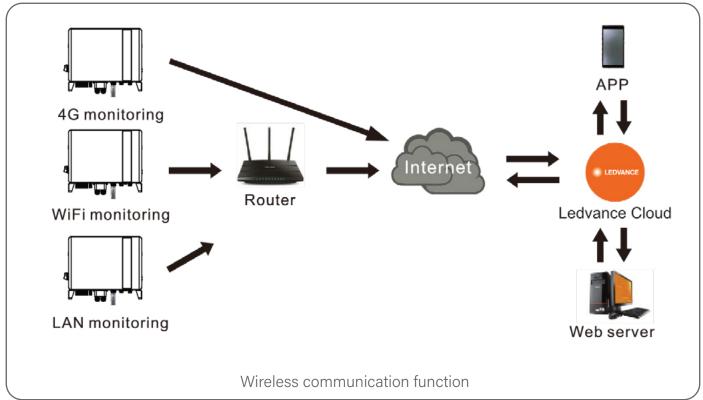
Please note that the CT orientation must be correct, otherwise the system will not work properly.

COMPATIBLE SMART METER MODEL	METER RS485 PIN DEFINITION
SDM630MCT	Pin 13 - RS485B, Pin 14 - RS485A
SDM630	B – RS485B, A – RS485A

INVERTER REMOTE MONITORING CONNECTION

The inverter can be remotely monitored via wi-fi, LAN or 4G.

The USB type COM port at the bottom of the inverter can connect to different kinds of LEDVANCE data loggers to realize the remote monitoring on cloud.ledvance platform. To install LEDVANCE data loggers, please refer to corresponding user manuals of LEDVANCE data loggers.


The LEDVANCE data loggers are optional and can be purchased separately. Dust cover is provided the inverter package in case the port is not used.

WARNING

The USB type COM port is only allowed to connect LEDVANCE dataloggers. It is forbidden to be used for other purposes.

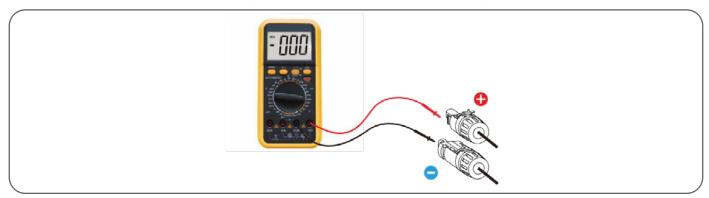
PREPARATION OF COMMISSIONING

- Ensure all the devices are accessible for operation, maintenance and service.
- Check and confirm that the inverter is firmly installed.
- Space for ventilation is sufficient for one inverter or multiple inverters.
- Nothing is left on the top of the inverter or battery module.
- Inverter and accessories are correctly connected.
- Cables are routed in safe place or protected from mechanical damage.
- Warning signs and labels are suitably affixed and durable.
- Bluetooth antenna has been connected to the antenna port of the inverter.
- An Android or IOS mobile phone with bluetooth function is available.
- LEDVANCE RE APP is installed on the mobile phone.

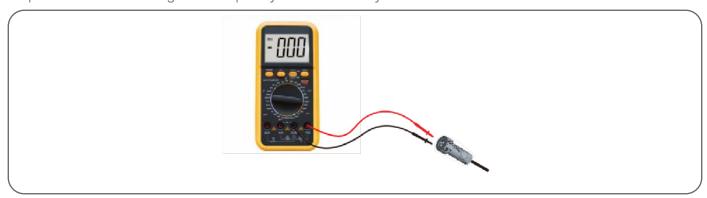
There are three ways to download and install the latest APP:

- 1. You can visit **cloud.ledvance.re** to download the latest version APP.
- 2. You can search "LEDVANCE RE" in Google Play or App Store.
- 3. You can scan this QR code below to download "LEDVANCE RE".

Ledvance RE for iOS



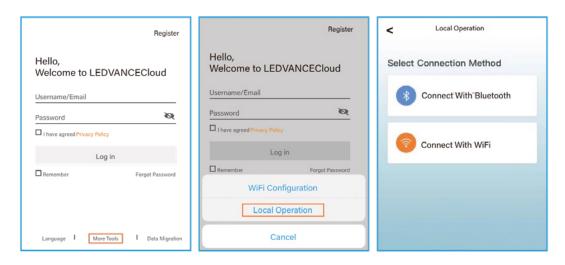
Ledvance RE for Android



COMMISSIONING PROCEDURE

Step 1: Measure DC voltage of PV strings and battery and ensure the polarity is correct.

Step 2: Measure AC voltage and frequency and ensure they are within local standard.

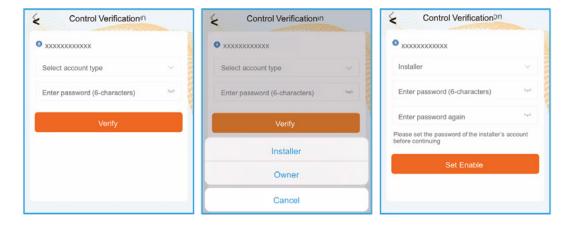


Step 3: Switch on the external AC breaker to power on the inverter control board (bluetooth signal available).

Step 4: Connect with bluetooth.

Turn on bluetooth switch on your mobile phone and then open the LEDVANCE RE APP.

Click "More Tools"->"Local Operation"->"Connect with bluetooth"



Step 5: Select the bluetooth signal from the inverter. (Bluetooth Name: Inverter SN)

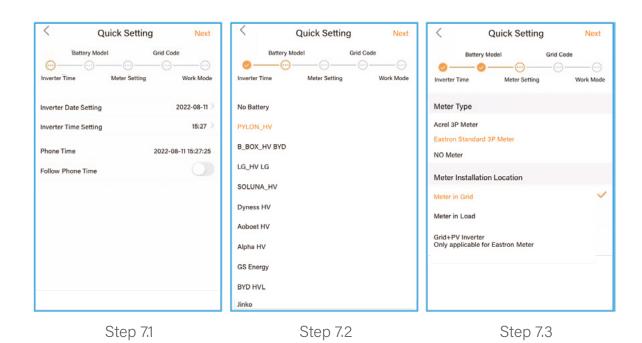
Step 6: Login account.

If you are the installer, please select the account type as Installer. If you are the plant owner, please select the account type as owner. Then set your own initial password for control verification. (The first log-in must be finished by installer in order to do the initial set up)

Step 7: After the log in for the first time, initial settings are required.

Step 7.1: Set the inverter Date and Time.

You can set to follow the time on your mobile phone.

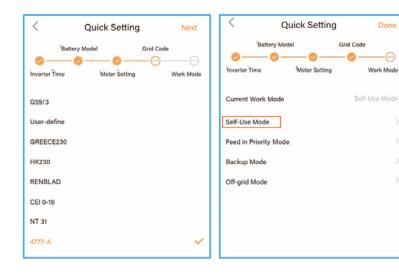

Step 7.2: **Set the battery model.**

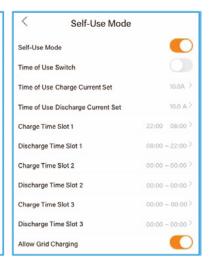
It must be based on the battery model that is actually connected to the inverter. If there is no battery connected for the moment, please select "No Battery" to avoid alarms. The default setting for battery over discharge SOC is 20%, force charge SOC is 10%.

Step 7.3: **Set the meter setting.**

It must be based on the meter type that is actually connected to the inverter.

If there is no meter connected for the moment, please select "No Meter" to avoid alarms. It is suggested to install the meter at the system grid connection point and select "Meter in Grid".

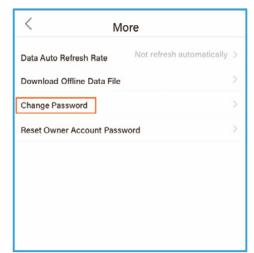


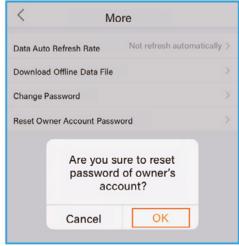

Step 7.4: **Set the grid code setting.**

Please select the grid code based on the local grid network requirements.

Step 7.5: Set the work mode setting.

Recommended setting is Self-Use Mode. This mode can maximize the use of PV power generation for household electricity, or store it in batteries and use it for household electricity. If need manually control the battery charging and discharging with respect to time, please use the Time of Use switch and t he following set points. The "Allow Grid Charging" is recommended to be turned on (If turned off, the inverter will not force charge the battery and battery could potentially go to sleep).


Step 7.4 Step 7.5(1) Step 7.5(2)


Step 8: Setup complete.

Now the initial settings on the inverter have been set and you can switch on the inverter DC switch and switch on battery breaker to start up the system. You can also explore in the APP to check the operating data, alarm message or other advanced settings.

Step 9: Change Password.

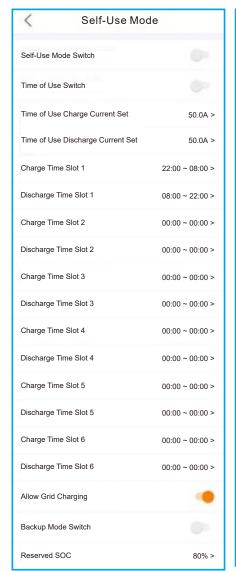
If the Owner forgot the password, please contact the installer. Installer log in and go to "Setting"->"More"->"Change Password" to reset the password for owner's account. If Installer forgot the password, please contact LEDVANCE service team.

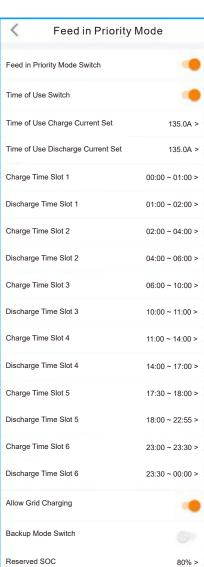
SHUTDOWN PROCEDURE

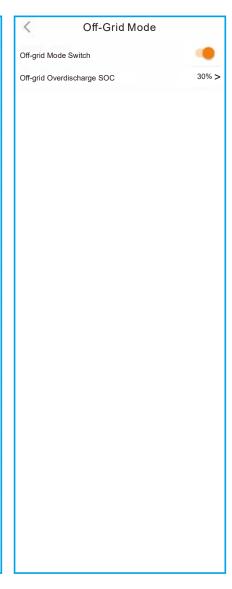
- Step 1. Turn off the AC breaker at the grid connection point.
- Step 2. Turn off the DC switch on the inverter.
- Step 3. Turn off the battery breaker.
- Step 4. Waiting for the device powered off and the system shutdown is completed.

WORK MODE

Self-Use Mode stores the excess PV power into the battery. If the battery is charged, or there is no battery, the excess PV power will be exported(sold)back to the utility company. If the system is set to not export any power, then the inverter will curtail the PV power(derate the inverter output power).


Feed in Priority Mode will ensure that the system exports any excess PV power after the home loads are supplied. If the export power quota has been met, then the remaining PV power will be stored in the battery. This mode should not be used if export power is going to be set to zero.


Off-Grid Mode is only to be used by systems that are not electrically connected to the grid at all. This mode is like Self-Use Mode, but the PV power will be curtailed if the battery is charged and the home load demand is lower than the amount of available PV power.


Peakshaving Mode is possible to set the maximum power (Pmax) that the system obtains from the main grid. The power of the main grid charges batteries and supplies power to the load, which is within Pmax. When the load power exceeds the set maximum power (Pmax), the insufficient part is provided by the battery. At the same time, you can set the Peak SOC and charge the battery to this SOC as far as possible under the premise of satisfying Pmeter. The power of grid can be controlled to reduce the cost of electricity.

Time of Use Switch is for customizing when the battery is allowed to charge and discharge power and at what rate, established by a current(amperage)setting. If this slider switch is turned on, the inverter will only use this schedule to determine when to charge and discharge the battery. If Allow Grid Charging is turned on, the inverter will use grid power to charge the battery only under two circumstances: (1) the battery drains to the Force Charge SOC. (2) Time of Use is enabled and there is not enough available PV power during the charge window to meet the current rate that is established.

Time of Use is for manual control of the battery charging/discharging. If Time of Use is turned off, charging/discharging is automatically regulated by the inverter.

MAINTENANCE

LEDVANCE inverter does not require any regular maintenance. However, cleaning the heatsink will help inverter dissipating heat and increase the lifetime of inverter. The dirt on the inverter can be cleaned with a soft brush.

CAUTION

Do not touch the surface when the inverter is operating. Some parts may be hot and cause burns. Turn OFF the inverter and let it cool down before you do any maintenance or cleaning of inverter.

The Screen and the LED status indicator lights can be cleaned with cloth if they are too dirty to be read.

NOTE

Never use any solvents, abrasives or corrosive materials to clean the inverter.

MESSAGE NAME	INFORMATION DESCRIPTION	TROUBLESHOOTING SUGGESTION
Off	Control device to shutdown	1. Turn on the device in the ON/OFF setting.
LmtByEPM	The device's output is under controlled	1. Confirm whether the inverter is connected to an external EPM/meter to prevent reverse current. 2. Confirm whether the inverter is controlled by an external third-party device. 3. Confirm whether the power setting of the inverter power control is limited.
LmtByDRM	DRM Function ON	1. No need to deal with it.
LmtByTemp	Over temperature power limited	1. No need to deal with it, the device is in normal
LmtByFreq	Frequency power limited	operation.
LmtByVg	The device is in the Volt-Watt mode	1. Due to the requirements of local safety regulations, when the grid voltage is high, the Volt-watt working mode is triggered, which generally does not need to be dealt with. 2. Inverter factory test errors causing this mode to open, if you need to close, you can close this mode in LCD, set the process: main menu ▶ advanced settings ▶ password 0010 ▶ STD mode settings ▶ working mode: NULL ▶ save and exit.
LmtByVar	The device is in the Volt-Var mode of operation	1. Due to the requirements of local safety regulations, when the grid voltage is high, the Volt-watt working mode is triggered, which generally does not need to be dealt with. 2. Inverter factory test errors causing this mode to open, if you need to close, you can close this mode in LCD, set the process: main menu ▶ advanced settings ▶ password 0010 ▶ STD mode settings ▶ working mode: NULL ▶ save and exit.
LmtByUnFr	Under frequency limit	1. No battery connected or not working.
Standby	Bypass run	1. COM port is using.
StandbySynoch	Off grid status to On grid status	1 No pood to deal with it
GridToLoad	Grid to load	1. No need to deal with it.

MESSAGE NAME	INFORMATION DESCRIPTION	TROUBLESHOOTING SUGGESTION
Surge Alarm	On-site grid surge	Grid side fault, restart the device. If it is still not eliminated, please contact the manufacturer's customer service.
OV-G-V01	Grid voltage exceeds the upper voltage range	
UN-G-V01	Grid voltage exceeds the lower voltage range	
OV-G-F01	Grid frequency exceeds the upper frequency range	
UN-G-F01	Grid frequency exceeds the lower frequency range	Confirm whether the power grid is abnormal. Confirm that the AC cable is properly connected. Restart the system and check if the fault
G-PHASE	Unbalanced grid voltage	3. Restart the system and check if the fault persists
G-F-GLU	Grid voltage frequency fluctuation	
NO-Grid	No grid	
OV-G-V02	Grid transient overvoltage	
OV-G-V03	Grid transient overvoltage	1. Restart the system, confirm if that the fault continues.
IGFOL-F	Grid current tracking failure	
OV-G-V05	Grid voltage RMS instantaneous overvoltage fault	
OV-G-V04	Grid voltage exceeds the upper voltage range	Confirm whether the power grid is abnormal. Confirm that the AC cable is properly connected. Restart the system and check if the fault
UN-G-V02	Grid voltage exceeds the lower voltage range	3. Restart the system and check if the fault persists.
OV-G-F02	Grid frequency exceeds the upper frequency range	
UN-G-F02	Grid frequency exceeds the lower frequency range	

MESSAGE NAME	INFORMATION DESCRIPTION	TROUBLESHOOTING SUGGESTION
NO-Battery	Battery is not connected	1. Check on information page 1 – verify the battery voltage is within standards. 2. Measure battery voltage at plug.
OV-Vbackup	Inverting overvoltage	Check whether the backup port wiring is normal Restart the system, confirm that the fault continues.
Over-Load	Load overload fault	Backup load power is too large, or some inductive load startup power is too large, need to remove some backup load, or remove the inductive load on the backup.
BatName-FAIL	Wrong battery brand selection	Confirm whether the battery model selection is consistent with the actual one.
CAN Fail	CAN Fail	1. Can failure is a failure of communication between inverter and battery. Check cable conditions. Check to ensure you have it plugged in on the CAN port of the battery and inverter. Check that you are using the right cable. Some batteries require a special battery from the battery manufacturer.
OV-Vbatt	Battery undervoltage detected	Verify battery voltage is within standards. Measure battery voltage at inverter connection point. Contact your battery manufacturer for further service.
UN-Vbatt	Battery overvoltage detected	Restart the system and check if the fault persists. If it is still not eliminated, please contact the manufacturer's customer service.
Fan Alarm	Fan alarm	Check if the internal fan is working correctly or jammed.
OV-DC01 (1020 DATA:0001)	DC 1 input overvoltage	Check if the PV voltage is abnormal Restart the system and the fault
OV-DC02 (1020 DATA:0002)	DC 2 input overvoltage	2. Restart the system, confirm that the fault continues
OV-BUS (1021 DATA:0000)	DC bus overvoltage	
UN-BUS01 (1023 DATA:0001)	DC bus undervoltage	1. Restart the system, confirm that the fault
UNB-BUS (1022 DATA:0000)	DC bus unbalanced voltage	continues.
UN-BUS02 (1023 DATA:0002)	Abnormal detection of DC bus voltage	
DC-INTF. (1027 DATA:0000)	DC hardware overcurrent (1, 2, 3, 4)	Check if the DC wires are connected correctly without loose connection.

MESSAGE NAME	INFORMATION DESCRIPTION	TROUBLESHOOTING SUGGESTION
OV-G-I (1018 DATA:0000)	A phase RMS value overcurrent	Confirm that the grid is abnormal. Confirm that the AC cable connection is not abnormal. Restart the system, confirm that the fault continues.
OV-DCA-I (1025 DATA:0000)	DC 1 average overcurrent	
OV-DCB-I (1026 DATA:0000)	DC 2 average overcurrent	1. Restart the system, confirm that the fault continues.
GRID-INTF. (1030 DATA:0000)	AC hardware overcurrent (abc phase)	
DCInj-FAULT (1037 DATA:0000)	The current DC component exceeds the limit	Confirm that the grid is abnormal. Confirm that the AC cable connection is not abnormal. Restart the system, confirm that the fault continues.
IGBT-OV-I (1048 DATA:0000)	IGBT overcurrent	1. Restart the system, confirm that the fault continues.
OV-TEM (1032 DATA:0000)	Module over temperature	Check whether the surrounding environment of the inverter has poor heat dissipation. Confirm whether the product installation meets the requirements.
RelayChk-FAIL (1035 DATA:0000)	Relay failure	1. Restart the system, confirm that the fault continues.
UN-TEM (103A DATA:0000)	Low temperature protection	Check the working environment temperature of the inverter. Restart the system to confirm if the fault continues.
PV ISO-PRO01 (1033 DATA:0001)	PV negative ground fault	Check whether the PV strings have insulation
PV ISO-PRO02 (1033 DATA:0002)	PV positive ground fault	problems. 2. Check whether the PV cable is damaged.
12Power-FAULT (1038 DATA:0000)	12V undervoltage failure	
ILeak-PRO01 (1034 DATA:0001)	Leakage current failure 01 (30mA)	
ILeak-PRO02 (1034 DATA:0002)	Leakage current failure 02 (60mA)	1. Check current leakage to ground. Verify your grounding. 2. Verify all wires are in good condition and not leaking current to ground.
ILeak-PRO03 (1034 DATA:0003)	Leakage current failure 03 (150mA)	
ILeak-PRO04 (1034 DATA:0004)	Leakage current failure 04	

MESSAGE NAME	INFORMATION DESCRIPTION	TROUBLESHOOTING SUGGESTION
ILeak_Check (1039 DATA:0000)	Leakage current sensor failure	Check current leakage to ground. Verify your grounding. Verify all wires are in good condition and not leaking current to ground.
GRID-INTF02 (1046 DATA:0000)	Power grid disturbance 02	Confirm whether the grid is seriously distorted. Check whether the AC cable is connected reliably.
OV-Vbatt-H/ OVBUS- H (1051 DATA:0000)	Battery overvoltage hardware failure / VBUS	Check if the battery circuit breaker is tripping. Check if the battery is damaged.
OV-ILLC (1052 DATA:0000)	LLC hardware overcurrent	Check whether the backup load is overloaded. Restart the system, confirm that the fault continues.
INI-FAULT (1031 DATA:0000)	AD zero drift overlink	
DSP-B-FAULT (1036 DATA:0000)	The master-slave DSP communication is abnormal	1. Restart the system, confirm that the fault continues.
AFCI-Check (1040 DATA:0000)	AFCI self-test failure	
ARC- FAULT (1041 DATA:0000)	AFCI failure	Verify connections are tight within your PV system. Arc fault settings can be changed in advanced settings if further adjustment is necessary.

Fault message and description

NOTE

If the inverter displays any alarm message as listed in table above; please turn off the inverter and wait for 5 minutes before restarting it.

If the failure persists, please contact your local distributor or the service center.

Please keep ready with you the following information before contacting us.

- 1. Serial number of LEDVANCE Three Phase Inverter;
- 2. The distributor/dealer of LEDVANCE Three Phase Inverter (if available);
- 3. Installation date.
- 4. The description of the problem together with necessary information, pictures, attachment.
- 5. The PV array configuration (e.g. number of panels, capacity of panels, number of strings, etc.);
- 6. Your contact details.

Technical Data	LHT-HV-5K F2	LHT-HV-6K F2		
BATTERY				
Battery Type	Li-ion			
Battery Voltage range	120 - 600Vdc			
Maximum charging Power	5kW	6kW		
Maximum Charge/discharge current	25	5A		
Communication	CAN/F	RS485		
OUTP	UT AC (GRID-SIDE)			
Rated output power	5kW	6kW		
Max. apparent output power	5.5kVA	6.6kVA		
Rated grid voltage	3/N/PE, 380V/400V			
Rating grid frequency	50 Hz/60 Hz			
AC grid frequency range	45-55 Hz/ 55-65Hz			
Rating grid output current	7.6A/7.2A	9.1A/8.7A		
Max. output current	8.4A/7.9A	10.0A/9.6A		
Power factor	>0.99 (0.8 leading to 0.8 lagging)			
THDi	<3	%		
INPUT AC (GRID-SIDE)				
Max. input power	7.5kW	9kW		
Rated input current	11.4A	13.8A		
Rated input voltage	3/N/PE, 380V/400V			
Rated input frequency	50 Hz/60 Hz			

Technical Data	LHT-HV-5K F2	LHT-HV-6K F2		
OUTPUT AC (BACK-UP)				
Rated output power	5kW	6kW		
Peak apparent output power	8.0kVA, 60 sec	9.6kVA, 60 sec		
Back-up switch time	< 10	< 10ms		
Rated output voltage	3/N/PE, 3	80V/400V		
Rated frequency	50 Hz,	/60 Hz		
Rated output current	7.6A/7.2A	9.1A/8.7A		
THDv(@linear load)	<2	%		
	EFFICIENCY			
PV Max. efficiency	97.87%	97.91%		
EU efficiency	96.77%	97.10%		
BAT charged by PV Max. efficiency	98.37%	98.45%		
BAT charged/discharged to AC Max. efficiency	97.32%	97.34%		
PROTECTION				
Anti-islanding protection	Yes			
AFCI	Yes			
Insulation Resistor detection	Yes			
Residual current monitoring unit	Yes			
Output overcurrent protection	Yes			
Output short protection	Yes			
Output overvoltage protection	Yes			
DC switch	Yes			
DC reverse polarity protection	Yes			
PV overvoltage protection	Yes			
Battery reverse protection	Yes			

Technical Data	LHT-HV-5K F2	LHT-HV-6K F2		
GENERAL DATA				
Dimensions(W/H/D)	600*500	600*500*230mm		
Weight	32.6	6kg		
Topology	Transfor	merless		
Self consumption (Night)	<25	5 W		
Operation temperature range	-25°C~	+60°C		
Relative humidity	0-9	5%		
Ingress protection	IP66			
Cooling concept	Natural convection			
Max.operation altitude	4000m			
Grid connection standard	G98 or G99, VDE-AR-N 4105 / VDE V 0124, EN 50549-1, VDE 0126 / UTE C 15/VFR:2019, RD 1699/RD 244 / UNE 206006 / UNE 206007-1, CEI 0-21, C10/11, NRS 097-2-1, TOR, EIFS 2018.2, IEC 62116, IEC 61727, IEC 60068, IEC 61683, EN 50530, MEA, PEA			
Safty/EMC standard	IEC 62109-1/-2 ,EN 61000-6-1/2/3/4			
	FEATURES			
PV connection	Stäubli MC4			
Battery connnection	Quick Connection plug			
AC connection	Quick Connection plug			
Display	LED			
Communication	CAN, RS485, Ethernet, Optional:Wi-Fi, Cellular, LAN, Bluetooth			
Warranty	10 years			

Technical Data	LHT-HV-8K F2	LHT-HV-10K F2		
INPUT DC (PV SIDE)				
Recommended max. PV power	12800W	16000W		
Max. input voltage	Max. input voltage 1000V			
Rated voltage	60	0V		
Start-up voltage	160	VC		
MPPT voltage range	200-{	350V		
Full load MPPT voltage range	200-850V	250-850V		
Max. input current	16A/16A/16A			
Max. short circuit current	24A/24A/24A			
MPPT number/Max input strings number	4/4			
BATTERY				
Battery Type	Li-ion			
Battery voltage range	120 - 6	500Vdc		
Maximum charging power	8kW	10kW		
Maximum charge/discharge current	50A			
Communication	CAN/RS485			
BATTERY				
Rated output power	8kW	10kW		
Max. apparent output power	8.8kVA	11kVA		
Rated grid voltage	3/N/PE, 380V/400V			
Rating grid frequency	50 Hz/60 Hz			

Technical Data	LHT-HV-8K F2	LHT-HV-10K F2	
BATTERY			
AC grid frequency range	45-55 Hz/ 55-65Hz		
Rating grid output current	12.2A/11.5A	15.2A/14.4A	
Max. output current	13.4A/12.7A	16.7A/15.8A	
Power factor	>0.99 (0.8 leadir	ng to 0.8 lagging)	
THDi	<3	%	
INPU	T AC (GRID-SIDE)		
Max. input power	12kW	15kW	
Rated input current	18.2A	22.8A	
Rated input voltage	3/N/PE, 380V/400V		
Rated input frequency	50 Hz/60 Hz		
ОИТР	UT AC (BACK-UP)		
Rated output power	8kW	10kW	
Peak apparent output power	12.8kVA, 60 sec	16kVA, 60 sec	
Back-up switch time	< 10)ms	
Rated output voltage	3/N/PE, 380V/400V		
Rated frequency	50 Hz/60 Hz		
Rated output current	12.2A/11.5A	15.2A/14.4A	
THDv(@linear load)	<2%		
EFFICIENCY			
PV Max. efficiency	98.03%	98.04%	
EU efficiency	97.41%	97.51%	

Technical Data	LHT-HV-8K F2	LHT-HV-10K F2		
EFFICIENCY				
BAT charged by PV Max. efficiency	98.22%	98.31%		
BAT charged/discharged to AC Max. efficiency	97.50%	97.50%		
	PROTECTION			
Anti-islanding protection	Ye	es		
AFCI	Ye	es		
Insulation resistor detection	Ye	s		
Residual current monitoring unit	Ye	es		
Output overcurrent protection	Ye	es		
Output short protection	Yes			
Output overvoltage protection	Yes			
DC switch	Yes			
DC reverse polarity protection	Yes			
PV overvoltage protection	Yes			
Battery reverse protection	Yes			
G	ENERAL DATA			
Dimensions(W/H/D)	600*500*230mm			
Weight	32.6kg			
Topology	Transformerless			
Self consumption (Night)	<25 W			
Operation temperature range	-25°C~+60°C			
Relative humidity	0-95%			

Technical Data	LHT-HV-8K F2	LHT-HV-10K F2		
GENERAL DATA				
Ingress protection	IPe	IP66		
Cooling concept	Natural co	pnvection		
Max.operation altitude	400	0m		
Grid connection standard	G98 or G99, VDE-AR-N 4105 / VDE V 0124, EN 50549-1, VDE 0126 / UTE C 15/VFR:2019, RD 1699/RD 244 / UNE 206006 / UNE 206007-1, CEI 0-21, C10/11, NRS 097-2-1, TOR, EIFS 2018.2, IEC 62116, IEC 61727, IEC 60068, IEC 61683, EN 50530, MEA, PEA			
Operation temperature range	-25°C~+60°C			
Safty/EMC standard	IEC 62109-1/-2 ,EN 61000-6-1/2/3/4			
FEATURES				
PV connection	Stäubl	i MC4		
Battery connnection	Quick Connection plug			
AC connection	Quick Connection plug			
Display	LED			
Communication	CAN, RS485, Ethernet, Optional:Wi-Fi, Cellular, LAN, Bluetooth			
Warranty	10 years			

LEDVANCE GmbH

Parkring 29-33 85748 Garching Germany

Tel: +48 734 134 386

E-mail: K.rytel@ledvance.com **Website:** www.ledvance.com

Please adhere to the actual products in case of any discrepancies in this user manual. If you encounter any problem on the inverter, please find out the inverter S/N and contact us, we will try to respond to your question ASAP.